Derivatives in Program Analysis

Albert-Ludwigs-Universitat Freiburg

UNI
1

FREIBURG

Peter Thiemann®  Martin Sulzmann?

1University of Freiburg

2Karlsruhe University of Applied Sciences

16 Dec 2015



Setting

Concurrent ML (CML)

m higher-order programming language
m concurrency (dynamic process creation: fork)
m dynamically created, typed channels t CHAN

m high-level synchronization primitives

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015

2/ 24

2
=)

O
&
2
[~}
i
o
S5



Objective

Analyze communication behavior of CML programs

m adherence to protocols

m deadlock detection

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 3/24

2
=)

O
&
2
[~}
i
o
S5



Objective

O
(-4
=
-2
zl.l.l
S

Analyze communication behavior of CML programs

m adherence to protocols

m deadlock detection

Static and dynamic analysis

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 3/24



Starting point

Effect system by Nielson and Nielson [POPL 1994]

m abstracts communication behavior to (sort of) regular
expression
m alphabet = events

m r!t send value of type t across channel r
m r’t receive value of type t across channel r

Syntax of effects [NN94]

b= e|rlt]r?t|t CHAN r |
FORK b|b-b|b+b|RECS.b|f

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 4 /24

UNI

FREIBURG



Example

REC .t CHAN r + FORK(r?t; 5)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 5/ 24

2
=)

O
&
2
[~}
i
o
S5



Example

Behavior

REC 3.t CHAN r + FORK(r?t; 8)

Term

e = choose [send (chl, 7),
wrap (receive ch2, fn x => 1)]

chi : int CHAN r, ch2 : bool CHAN r»
F e :int COM (rlint + r?bool)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 5/ 24

2
=)

O
&
2
[~}
i
o
S5



Question

m a typed term e : t; brerm

m a behavior specification bspec

Thiemann & Sulzmann

Derivatives in Program Analysis

16 Dec 2015

6 /24

2
=)

O
&
2
[~}
i
o
S5



Question

m a typed term e : t; brerm

m a behavior specification bspec

Does the term’s behavior adhere to the specification?

m statically: brerm T bspec?
m dynamically: is a trace 7 of e admissible for bspec?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 6 /24

2
=)

O
&
2
[~}
i
o
S5



Approach

Turn into a language problem

m define [b] as a set of traces
m define brerm T bspec Semantically by [brerm] € [bspec]
m define "7 admissible for bspec” by 7 € [bspec]

m find decision procedures for inclusion problem and word
problem

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 7/ 24

2
=)

O
&
2
[~}
i
o
S5



Behavior ~~ set of traces

Start with a simpler set of behaviors ...

bi=¢e|x|b-b|b+b]|b"

m loops instead of recursion; no FORK

m regular expressions ~~ regular trace languages

Thiemann & Sulzmann Derivatives in Program Analysis

16 Dec 2015

8 /24

UNI

FREIBURG



Behavior ~~ set of traces

Start with a simpler set of behaviors ...

bi=¢e|x|b-b|b+b]|b"

m loops instead of recursion; no FORK

m regular expressions ~~ regular trace languages

Compositional definition for trace language

[e] = {e}
[x] = {x}
[b1 - b2 = [b1] - [£2]
[b1 + b2] =[] U [b2]
[6°] = uX{e} U [b] - X

Thiemann & Sulzmann Derivatives in Program Analysis

16 Dec 2015

8 /24

UNI

FREIBURG



Behavior ~~ set of traces, Il

O
(-4
=
-2
zl.l.l
S

Adding FORK

m FORK b starts an independent thread, which generates
events according to its behavior b

m events of forked thread occur interleaved with events of main
thread: use asynchronous shuffle operator ||

[FORK(x) - (v - 2)] = {xyz, yxz, yzx} = [X]|l[y - Z]
= [(FORK(x) - y) - Z]
= [(FORK(x) - y)] 77 [2]

:{xy,yx}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 9 /24



Behavior ~~ set of traces, Il

O
(-4
=
-2
zl.l.l
S

Adding FORK

m FORK b starts an independent thread, which generates
events according to its behavior b

m events of forked thread occur interleaved with events of main
thread: use asynchronous shuffle operator ||

[FORK(x) - (v - 2)] = {xyz, yxz, yzx} = [X]|l[y - Z]
= [(FORK(x) - y) - Z]
= [(FORK(x) - y)] 77 [2]

:{xy,yx}

m no obvious compositional description

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 9 /24



Behavior ~~ set of traces, Il

m Parameterize language definition by a continuation language

m FORK interleaves with the continuation language

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 10 / 24

2
=)

O
&
2
[~}
i
o
S5



Behavior ~ set of traces, IV

O
(-4
=
-2
zl.l.l
S

Semantics of behaviors, K C X*

[e]K = K
[x]K ={x} - K
[b1 - k2] K = [a]([£2] K)
[b1 + bo] K = [b1]K U [b2] K
[b*|K = uX.K U [b] X
[FORK b]K = K||[b]{e}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 11 /24



Behavior ~ set of traces, IV

Semantics of behaviors, K C X*

[e]K = K
[x]K ={x} - K
[b1 - bo] K = [ba]([b2] K)
[b1 + bo]K = [ ]K U [b2] K
[b*|K = uX.K U [b] X
[FORK b]K = K||[b]{e}

Theorem

With this definition, forkable expressions form a Kleene algebra.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 11 /24

2
=)

O
&
2
[~}
i
o
S5



Properties

Revisiting the example

[FORK(x) - (v - 2)]K = [FORK(x)]([y - z]K)
= {x}HIly - z]K
= {<HIYI([=]K)
= [FORK(x)I([¥]([z] K))
= [FORK(x) - y]([z]K)
= [(FORK(x) - y) - z] K

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 12 / 24

2
=)

O
&
2
[~}
i
o
S5



Inclusion problem

Is [b1]{e} C [b2]{c} decidable?

Thiemann & Sulzmann

Derivatives in Program Analysis

16 Dec 2015

13 / 24

UNI

FREIBURG



Inclusion problem

Is [b1]{e} C [b2]{e} decidable?

Unfortunately ...

m Consider

L = [(FORK (xy2))"]{<}
— X {e} U Doz} |IX
— (e} Ufxz} U x| Doz) U .
— {2z}

the iterated shuffle (shuffle closure)
m Clearly LN x"y*z* = {x"y"z"} which is not even
context-free, so L cannot be context-free, either

m inclusion is undecidable

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 13 / 24

UNI

FREIBURG



Word problem

UNI
FREIBURG

Recall Brzozowski: Derivatives for regular expressions

dy(e) =10 N(e)=e
_Je x=y =
400=1y N()
dy(by - b2) = y(bl) by N(by - b2) = N(b1) - N(b2)
N(b1) - dy(b2)
dy(b1 + b2) = dy(bl) U dy(b2) N(b1 + b2) = N(b1) U N(b2)
d,(b") = dy (b) - b° N(b") =<
Correctness

[dy(b)] = y~*[b] = {w | yw € [b]}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 14 / 24



Derivatives for forkable expressions?

Two changes wrt regular expressions

d,(FORK b) = FORK (d, (b))
dy(b1 - bp) = dy(b1) - by + C(b1) - dy(b2)

m C(b) is the concurrent part of b
B intuition: there are two possibilities

the derivative takes the first symbol of b; or

the derivative takes the first symbol of b, if b; can somehow
be skipped; for instance if there is a path through b; that
consumes no symbols, but may fork new processes

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 15 / 24

2
=)

O
&
2
[~}
i
o
S5



Concurrent and sequential part of a forkable

Definition

m C(b) concurrent part

m S(b) sequential part

expressicn

C(e) = 5(e) =
C(x) = 5(x) =
C(b1-b2) = C(bl) - C(b2) S(b1 - bp) =
C(b1 + b2) = C(b1) + C(b2)  S(b1 + b2) = S(b1) + S(b2)
C(b*) = C(b)" 5(b%) = C(b)* - S(b) - b*
C(FORK b) = FORK b S(FORK b) =10

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 16 / 24

2
=)

FREIBURG

5(b1) by + C(b1) - S(b2)



Concurrent and sequential part of a forkable

Properties

a b= C(b) + S(b)
m C(C(b)) = C(b)
m C(S(b)) =10

m S(C(b))=10

m S(S(b)) = S(b)

expressicn

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 17 / 24

2
=)

O
&
2
[~}
i
o
S5



Correctness of derivatives

O
(-4
=
-2
zl.l.l
S

[dy(b)]{e} = y[b]{e}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 18 / 24



Correctness of derivatives

Theorem

[dy(b)}{e} = y ' [bl{e}

Proof

By induction using the generalized hypothesis

vb. VK. [dy(b)]K U [C(b)H{e}I(y™ K) =y [b]K

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 18 / 24

2
=)

O
&
2
[~}
i
o
S5



Back to the word problem

O
(-4
=
-2
zl.l.l
S

Decide the word problem by ...

m the derivative d, (b) is effectively computable
m ¢ € [b]{e} is effectively checkable
m to test w € [b]{e} check ¢ € [dy(b)]{c}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 19 / 24



Back to the inclusion problem

Iterated derivatives

dx...((FORK(xy))")

= dx. (dx(FORK(xy)) - (FORK(xy))")

dx...(FORK(y) - (FORK(xy))")
dx..(FORK(y)) + C(FORK(y)) -dx...((FORK(xy))")

/

0 —FORK(y)
= FORK(y) - (dx..(FORK(y) - (FORK(xy))*))
= FORK(y) - - FORK(y) - d....((FORK(xy))*)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 20 / 24

2
=)

O
&
2
[~}
i
o
S5



Back to the inclusion problem, [l

Observation

m The size of an iterated derivative grows without bound.

m Inclusion tests that work by constructing a (bi)simulation do
not work.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 /24

2
=)

O
&
2
[~}
i
o
S5



Back to the inclusion problem, [l

O
(-4
=
-2
zl.l.l
S

Observation

m The size of an iterated derivative grows without bound.

m Inclusion tests that work by constructing a (bi)simulation do
not work.

Definition: Well-behavior

bg is well-behaved if all subterms of the form b* have the
property that, for all w € £*, C(dy (b)) < e.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 /24



Back to the inclusion problem, [l

Observation

m The size of an iterated derivative grows without bound.

m Inclusion tests that work by constructing a (bi)simulation do
not work.

Definition: Well-behavior

bg is well-behaved if all subterms of the form b* have the
property that, for all w € ¥, C(dy (b)) < e.

Lemma
If b is fork=free, then , for all w € ¥, C(dw (b)) <e.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 /24

2
=)

O
&
2
[~}
i
o
S5



A decidable case for inclusion

Let #d(b) be the number of dissimilar iterated derivatives of b.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 /24

2
=)

O
&
2
[~}
i
o
S5



A decidable case for inclusion

O
(-4
=
-2
zl.l.l
S

Let #d(b) be the number of dissimilar iterated derivatives of b.

Let b be well-behaved. Then t#d(b) < oco.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 /24



A decidable case for inclusion

Definition

Let #d(b) be the number of dissimilar iterated derivatives of b.

Theorem
Let b be well-behaved. Then t#d(b) < oco.

Corollary

If by and by are well-behaved, then “[b1] C [b2]]?" is decidable.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015

22 / 24

UNI

FREIBURG



A decidable case for inclusion

Definition

Let #d(b) be the number of dissimilar iterated derivatives of b.

Theorem
Let b be well-behaved. Then #d(b) < oc.

Corollary

If by and by are well-behaved, then “[b1] C [b2]]?" is decidable.

Proof

Since #d(b;) < oo, we can attempt to construct a bisimulation for
b1 + by ~ by. This construction stops after finitely many steps.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 /24

UNI

FREIBURG



Open questions

Power of forkable expressions

m Forkable expressions subsume regular shuffle expressions.

m The reverse direction is not known.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015

23 / 24

UNI

FREIBURG



Open questions

Power of forkable expressions

m Forkable expressions subsume regular shuffle expressions.

m The reverse direction is not known.

Complexity of word problem?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 /24

UNI

FREIBURG



Open questions

Power of forkable expressions

m Forkable expressions subsume regular shuffle expressions.

m The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015

23 / 24

UNI

FREIBURG



Open questions

Power of forkable expressions

m Forkable expressions subsume regular shuffle expressions.

m The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Synchronizing shuffle

If there are, e.g., matching events like r!t and r?t, we want to
resolve to event [r]. Can we define derivatives for this case?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 /24

UNI

FREIBURG



Conclusion

Towards a compositional trace semantics for CML

New flavor of forkable regular expressions to describe effect
traces

Generated language is context-sensitive
(conjecture: proper subclass)

Decidable word problem = dynamic analysis possible

Inclusion decidable in restricted cases = static analysis
possible; approximation?

See upcoming paper at LATA2016

http://arxiv.org/abs/1510.07293

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 24 / 24

2
=)

O
&
2
[~}
i
o
S5


http://arxiv.org/abs/1510.07293

	Motivation

