
Derivatives in Program Analysis

Albert-Ludwigs-Universität Freiburg

Peter Thiemann1 Martin Sulzmann2

1University of Freiburg

2Karlsruhe University of Applied Sciences

16 Dec 2015

Setting

Concurrent ML (CML)

higher-order programming language

concurrency (dynamic process creation: fork)

dynamically created, typed channels t CHAN

high-level synchronization primitives

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 2 / 24

Objective

Analyze communication behavior of CML programs

adherence to protocols

deadlock detection

Static and dynamic analysis

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 3 / 24

Objective

Analyze communication behavior of CML programs

adherence to protocols

deadlock detection

Static and dynamic analysis

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 3 / 24

Starting point

Effect system by Nielson and Nielson [POPL 1994]

abstracts communication behavior to (sort of) regular
expression

alphabet = events

r !t send value of type t across channel r
r?t receive value of type t across channel r

Syntax of effects [NN94]

b ::= ε | r !t | r?t | t CHAN r |
FORK b | b · b | b + b | REC β.b | β

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 4 / 24

Example

Behavior

REC β.t CHAN r + FORK(r?t;β)

Term

e = choose [send (ch1, 7),

wrap (receive ch2, fn x => 1)]

ch1 : int CHAN r1, ch2 : bool CHAN r2
` e : int COM (r1!int + r2?bool)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 5 / 24

Example

Behavior

REC β.t CHAN r + FORK(r?t;β)

Term

e = choose [send (ch1, 7),

wrap (receive ch2, fn x => 1)]

ch1 : int CHAN r1, ch2 : bool CHAN r2
` e : int COM (r1!int + r2?bool)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 5 / 24

Question

Given

a typed term e : t; bterm

a behavior specification bspec

Does the term’s behavior adhere to the specification?

statically: bterm v bspec?

dynamically: is a trace π of e admissible for bspec?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 6 / 24

Question

Given

a typed term e : t; bterm

a behavior specification bspec

Does the term’s behavior adhere to the specification?

statically: bterm v bspec?

dynamically: is a trace π of e admissible for bspec?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 6 / 24

Approach

Turn into a language problem

define JbK as a set of traces

define bterm v bspec semantically by JbtermK ⊆ JbspecK
define “π admissible for bspec” by π ∈ JbspecK
find decision procedures for inclusion problem and word
problem

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 7 / 24

Behavior set of traces

Start with a simpler set of behaviors . . .

b ::= ε | x | b · b | b + b | b∗

loops instead of recursion; no FORK

regular expressions regular trace languages

Compositional definition for trace language

JεK = {ε}
JxK = {x}

Jb1 · b2K = Jb1K · Jb2K
Jb1 + b2K = Jb1K ∪ Jb2K

Jb∗K = µX .{ε} ∪ JbK · X

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 8 / 24

Behavior set of traces

Start with a simpler set of behaviors . . .

b ::= ε | x | b · b | b + b | b∗

loops instead of recursion; no FORK

regular expressions regular trace languages

Compositional definition for trace language

JεK = {ε}
JxK = {x}

Jb1 · b2K = Jb1K · Jb2K
Jb1 + b2K = Jb1K ∪ Jb2K

Jb∗K = µX .{ε} ∪ JbK · X

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 8 / 24

Behavior set of traces, II

Adding FORK

FORK b starts an independent thread, which generates
events according to its behavior b

events of forked thread occur interleaved with events of main
thread: use asynchronous shuffle operator ‖

JFORK(x) · (y · z)K = {xyz , yxz , yzx} = JxK‖Jy · zK
= J(FORK(x) · y) · zK
= J(FORK(x) · y)K︸ ︷︷ ︸

={xy ,yx}

?? JzK

no obvious compositional description

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 9 / 24

Behavior set of traces, II

Adding FORK

FORK b starts an independent thread, which generates
events according to its behavior b

events of forked thread occur interleaved with events of main
thread: use asynchronous shuffle operator ‖

JFORK(x) · (y · z)K = {xyz , yxz , yzx} = JxK‖Jy · zK
= J(FORK(x) · y) · zK
= J(FORK(x) · y)K︸ ︷︷ ︸

={xy ,yx}

?? JzK

no obvious compositional description

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 9 / 24

Behavior set of traces, III

Solution

Parameterize language definition by a continuation language

FORK interleaves with the continuation language

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 10 / 24

Behavior set of traces, IV

Semantics of behaviors, K ⊆ Σ∗

JεKK = K

JxKK = {x} · K
Jb1 · b2KK = Jb1K(Jb2KK)

Jb1 + b2KK = Jb1KK ∪ Jb2KK

Jb∗KK = µX .K ∪ JbKX

JFORK bKK = K‖JbK{ε}

Theorem

With this definition, forkable expressions form a Kleene algebra.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 11 / 24

Behavior set of traces, IV

Semantics of behaviors, K ⊆ Σ∗

JεKK = K

JxKK = {x} · K
Jb1 · b2KK = Jb1K(Jb2KK)

Jb1 + b2KK = Jb1KK ∪ Jb2KK

Jb∗KK = µX .K ∪ JbKX

JFORK bKK = K‖JbK{ε}

Theorem

With this definition, forkable expressions form a Kleene algebra.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 11 / 24

Properties

Revisiting the example

JFORK(x) · (y · z)KK = JFORK(x)K(Jy · zKK)

= {x}‖Jy · zKK

= {x}‖JyK(JzKK)

= JFORK(x)K(JyK(JzKK))

= JFORK(x) · yK(JzKK)

= J(FORK(x) · y) · zKK

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 12 / 24

Inclusion problem

Is Jb1K{ε} ⊆ Jb2K{ε} decidable?

Unfortunately . . .

Consider

L = J(FORK (xyz))∗K{ε}
= µX .{ε} ∪ {xyz}‖X
= {ε} ∪ {xyz} ∪ {xyz}‖{xyz} ∪ . . .
= {xyz}‖

the iterated shuffle (shuffle closure)

Clearly L ∩ x∗y∗z∗ = {xnynzn} which is not even
context-free, so L cannot be context-free, either

inclusion is undecidable

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 13 / 24

Inclusion problem

Is Jb1K{ε} ⊆ Jb2K{ε} decidable?

Unfortunately . . .

Consider

L = J(FORK (xyz))∗K{ε}
= µX .{ε} ∪ {xyz}‖X
= {ε} ∪ {xyz} ∪ {xyz}‖{xyz} ∪ . . .
= {xyz}‖

the iterated shuffle (shuffle closure)

Clearly L ∩ x∗y∗z∗ = {xnynzn} which is not even
context-free, so L cannot be context-free, either

inclusion is undecidable

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 13 / 24

Word problem

Recall Brzozowski: Derivatives for regular expressions

dy (ε) = ∅ N(ε) = ε

dy (x) =

{
ε x = y

∅ x 6= y
N(x) = ∅

dy (b1 · b2) = dy (b1) · b2 N(b1 · b2) = N(b1) · N(b2)

+ N(b1) · dy (b2)

dy (b1 + b2) = dy (b1) ∪ dy (b2) N(b1 + b2) = N(b1) ∪ N(b2)

dy (b∗) = dy (b) · b∗ N(b∗) = ε

Correctness

Jdy (b)K = y−1JbK = {w | yw ∈ JbK}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 14 / 24

Derivatives for forkable expressions?

Two changes wrt regular expressions

dy (FORK b) = FORK (dy (b))

dy (b1 · b2) = dy (b1) · b2 + C (b1) · dy (b2)

C (b) is the concurrent part of b

intuition: there are two possibilities

1 the derivative takes the first symbol of b1 or
2 the derivative takes the first symbol of b2 if b1 can somehow

be skipped; for instance if there is a path through b1 that
consumes no symbols, but may fork new processes

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 15 / 24

Concurrent and sequential part of a forkable expression
Definition

C (b) concurrent part

S(b) sequential part

C (ε) = ε S(ε) = ∅
C (x) = ∅ S(x) = x

C (b1 · b2) = C (b1) · C (b2) S(b1 · b2) = S(b1) · b2 + C (b1) · S(b2)

C (b1 + b2) = C (b1) + C (b2) S(b1 + b2) = S(b1) + S(b2)

C (b∗) = C (b)∗ S(b∗) = C (b)∗ · S(b) · b∗

C (FORK b) = FORK b S(FORK b) = ∅

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 16 / 24

Concurrent and sequential part of a forkable expression
Properties

b ≡ C (b) + S(b)

C (C (b)) = C (b)

C (S(b)) = ∅
S(C (b)) = ∅
S(S(b)) = S(b)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 17 / 24

Correctness of derivatives

Theorem

Jdy (b)K{ε} = y−1JbK{ε}

Proof

By induction using the generalized hypothesis

∀b. ∀K . Jdy (b)KK ∪ JC (b)K{ε}‖(y−1K) = y−1JbKK

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 18 / 24

Correctness of derivatives

Theorem

Jdy (b)K{ε} = y−1JbK{ε}

Proof

By induction using the generalized hypothesis

∀b. ∀K . Jdy (b)KK ∪ JC (b)K{ε}‖(y−1K) = y−1JbKK

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 18 / 24

Back to the word problem

Decide the word problem by . . .

the derivative dy (b) is effectively computable

ε ∈ JbK{ε} is effectively checkable

to test w ∈ JbK{ε} check ε ∈ Jdw (b)K{ε}

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 19 / 24

Back to the inclusion problem

Iterated derivatives

dx ...((FORK(xy))∗)

= dx ...(dx(FORK(xy)) · (FORK(xy))∗)

= dx ...(FORK(y) · (FORK(xy))∗)

= dx ...(FORK(y))︸ ︷︷ ︸
=∅

+ C (FORK(y))︸ ︷︷ ︸
=FORK(y)

·dx ...((FORK(xy))∗)

= FORK(y) · (dx ...(FORK(y) · (FORK(xy))∗))

= FORK(y) · · ·FORK(y) · dx ...((FORK(xy))∗)

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 20 / 24

Back to the inclusion problem, II

Observation

The size of an iterated derivative grows without bound.

Inclusion tests that work by constructing a (bi)simulation do
not work.

Definition: Well-behavior

b0 is well-behaved if all subterms of the form b∗ have the
property that, for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Lemma

If b is fork=free, then , for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 / 24

Back to the inclusion problem, II

Observation

The size of an iterated derivative grows without bound.

Inclusion tests that work by constructing a (bi)simulation do
not work.

Definition: Well-behavior

b0 is well-behaved if all subterms of the form b∗ have the
property that, for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Lemma

If b is fork=free, then , for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 / 24

Back to the inclusion problem, II

Observation

The size of an iterated derivative grows without bound.

Inclusion tests that work by constructing a (bi)simulation do
not work.

Definition: Well-behavior

b0 is well-behaved if all subterms of the form b∗ have the
property that, for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Lemma

If b is fork=free, then , for all w ∈ Σ∗, C (dw (b)) ≤ ε.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 21 / 24

A decidable case for inclusion

Definition

Let]d(b) be the number of dissimilar iterated derivatives of b.

Theorem

Let b be well-behaved. Then]d(b) <∞.

Corollary

If b1 and b2 are well-behaved, then “Jb1K ⊆ Jb2K?” is decidable.

Proof

Since]d(bi) <∞, we can attempt to construct a bisimulation for
b1 + b2 ∼ b2. This construction stops after finitely many steps.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 / 24

A decidable case for inclusion

Definition

Let]d(b) be the number of dissimilar iterated derivatives of b.

Theorem

Let b be well-behaved. Then]d(b) <∞.

Corollary

If b1 and b2 are well-behaved, then “Jb1K ⊆ Jb2K?” is decidable.

Proof

Since]d(bi) <∞, we can attempt to construct a bisimulation for
b1 + b2 ∼ b2. This construction stops after finitely many steps.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 / 24

A decidable case for inclusion

Definition

Let]d(b) be the number of dissimilar iterated derivatives of b.

Theorem

Let b be well-behaved. Then]d(b) <∞.

Corollary

If b1 and b2 are well-behaved, then “Jb1K ⊆ Jb2K?” is decidable.

Proof

Since]d(bi) <∞, we can attempt to construct a bisimulation for
b1 + b2 ∼ b2. This construction stops after finitely many steps.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 / 24

A decidable case for inclusion

Definition

Let]d(b) be the number of dissimilar iterated derivatives of b.

Theorem

Let b be well-behaved. Then]d(b) <∞.

Corollary

If b1 and b2 are well-behaved, then “Jb1K ⊆ Jb2K?” is decidable.

Proof

Since]d(bi) <∞, we can attempt to construct a bisimulation for
b1 + b2 ∼ b2. This construction stops after finitely many steps.

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 22 / 24

Open questions

Power of forkable expressions

Forkable expressions subsume regular shuffle expressions.

The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Synchronizing shuffle

If there are, e.g., matching events like r !t and r?t, we want to
resolve to event [r]. Can we define derivatives for this case?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 / 24

Open questions

Power of forkable expressions

Forkable expressions subsume regular shuffle expressions.

The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Synchronizing shuffle

If there are, e.g., matching events like r !t and r?t, we want to
resolve to event [r]. Can we define derivatives for this case?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 / 24

Open questions

Power of forkable expressions

Forkable expressions subsume regular shuffle expressions.

The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Synchronizing shuffle

If there are, e.g., matching events like r !t and r?t, we want to
resolve to event [r]. Can we define derivatives for this case?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 / 24

Open questions

Power of forkable expressions

Forkable expressions subsume regular shuffle expressions.

The reverse direction is not known.

Complexity of word problem?

Adding REC

What remains decidable, when we consider the full behavior
language of [NN94], e.g, add general recursion?

Synchronizing shuffle

If there are, e.g., matching events like r !t and r?t, we want to
resolve to event [r]. Can we define derivatives for this case?

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 23 / 24

Conclusion

Towards a compositional trace semantics for CML

New flavor of forkable regular expressions to describe effect
traces

Generated language is context-sensitive
(conjecture: proper subclass)

Decidable word problem ⇒ dynamic analysis possible

Inclusion decidable in restricted cases ⇒ static analysis
possible; approximation?

See upcoming paper at LATA2016

http://arxiv.org/abs/1510.07293

Thiemann & Sulzmann Derivatives in Program Analysis 16 Dec 2015 24 / 24

http://arxiv.org/abs/1510.07293

	Motivation

